Poisson Spacing Statistics for Value Sets of Polynomials
نویسنده
چکیده
If f is a polynomial with integer coefficients and q is an integer, we may regard f as a map from Z/qZ to Z/qZ. We show that the distribution of the (normalized) spacings between consecutive elements in the image of these maps becomes Poissonian as q tends to infinity along any sequence of square free integers such that the mean spacing modulo q tends to infinity.
منابع مشابه
Propagation Models and Fitting Them for the Boolean Random Sets
In order to study the relationship between random Boolean sets and some explanatory variables, this paper introduces a Propagation model. This model can be applied when corresponding Poisson process of the Boolean model is related to explanatory variables and the random grains are not affected by these variables. An approximation for the likelihood is used to find pseudo-maximum likelihood esti...
متن کاملApplication of tests of goodness of fit in determining the probability density function for spacing of steel sets in tunnel support system
One of the conventional methods for temporary support of tunnels is to use steel sets with shotcrete. The nature of a temporary support system demands a quick installation of its structures. As a result, the spacing between steel sets is not a fixed amount and it can be considered as a random variable. Hence, in the reliability analysis of these types of structures, the selection of an appropri...
متن کاملPoisson-Lindley INAR(1) Processes: Some Estimation and Forecasting Methods
This paper focuses on different methods of estimation and forecasting in first-order integer-valued autoregressive processes with Poisson-Lindley (PLINAR(1)) marginal distribution. For this purpose, the parameters of the model are estimated using Whittle, maximum empirical likelihood and sieve bootstrap methods. Moreover, Bayesian and sieve bootstrap forecasting methods are proposed and predict...
متن کاملFine Structure of the Zeros of Orthogonal Polynomials, Iv. a Priori Bounds and Clock Behavior Yoram Last and Barry Simon
We prove locally uniform spacing for the zeros of orthogonal polynomials on the real line under weak conditions (Jacobi parameters approach the free ones and are of bounded variation). We prove that for ergodic discrete Schrödinger operators, Poisson behavior implies positive Lyapunov exponent. Both results depend on a priori bounds on eigenvalue spacings for which we provide several proofs.
متن کاملFine Structure of the Zeros of Orthogonal Polynomials, Iv. a Priori Bounds and Clock Behavior
We prove locally uniform spacing for the zeros of orthogonal polynomials on the real line under weak conditions (Jacobi parameters approach the free ones and are of bounded variation). We prove that for ergodic discrete Schrödinger operators, Poisson behavior implies positive Lyapunov exponent. Both results depend on a priori bounds on eigenvalue spacings for which we provide several proofs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008